

Thermal 3Ht Technical Datasheet - 2017

Thermal 3Ht is a high performance, rigid insulation consisting of superior closed-cell lightweight and resilient expanded polystyrene (EPS) with advanced metallic polymer facers and/or white woven facers. Thermal 3Ht is an Energy Star qualified insulation and is eligible for LEED points. Thermal 3Ht may contain up to 25% recycled content.

Benefits of Thermal 3Ht

- In one product, Thermal 3Ht is an air barrier, vapor barrier, radiant barrier and an insulator.
- Thermal 3Ht has excellent dimensional stability and is flexible and durable.
- Depending on thickness, Thermal 3Ht can be bent to 90° angles. It does not easily crack, chip or break.
- Thermal 3Ht has NO thermal drift and will remain stable over its entire service life.
- Thermal 3Ht contains no dyes, formaldehyde, or ozone depleting blowing agents.
- Thermal 3Ht is produced with an inert additive that deters carpenter ants and termites.
- Thermal 3Ht does not promote mold.
- Thermal 3Ht is manufactured in a variety of thicknesses and densities.
- Thermal 3Ht is available in sheets, rolls and accordion fold. (Custom lengths offered.)
- Thermal 3Ht is eligible for a 20 Year Thermal Performance Warranty a warranty that is not limited to a percentage of the published R-value.

Property	Туре І	Test Method		
Nominal Density (pcf)	1.0	ASTM C303		
C-Value (Conductance)				
$BTU/(hr \cdot ft^2 \cdot F)$ (per inch)		ASTM C518		
@ 25 °F	0.23	or		
@ 40 °F	0.24	ASTM C177		
@ 75 °F	0.26			
R-Value (Thermal Resistance)				
$(hr \cdot ft^2 \cdot F)/BTU$ (per inch)		ASTM C518		
@ 25 °F	4.35	or		
@ 40 °F	4.17	ASTM C177		
@ 75 °F	3.85			
Compressive Strength	13	ASTM D1621		
(psi, 10% deformation)	15	ASTM D1021		
Flexural Strength (psi)	33	ASTM C203		
Dimensional Stability (maximum %)	<2%	ASTM D2126		
*Water Vapor Transmission (perms)	<1.0	ASTM E96		
Absorption (% vol.)	<1.0	ASTM C272		
Capillary	none	—		
Flame Spread	<20	ASTM E84		
Smoke Developed	150 - 300	ASTM E84		
Total Emissivity, ε (Facer)				
Silver (Reflective)	0.03	ASTM E408		
White (Poly)	0.18			
*The IRC defines a vapor barrier as having a perm rating of 1.0, or less. A vapor barrier is a Class I vapor control layer. The test procedure for classifying vapor barriers is ASTM E96 Test Method.				

Typical Physical Properties of Thermal 3Ht

Thermal 3Ht Technical Datasheet - 2017

ASTM C1363-05 Thermal Performance Testing – Thermal 3Ht

Architectural Testing Inc. (ATI) an independent test laboratory was commissioned to test Thermal 3Ht to ASTM C1363-05 "*Standard Test Method for Determination of the Steady State Thermal Performance of Building Assemblies*". Construction materials include: sheetrock, vapor retarders where applicable, steel or wood framing, concrete, insulation(s), OSB, and steel sheathing.

The "*temperature range:* 70 °*F*/21 °*C warm side* - 0 °*F*/-18 °*C cold side*" was designed to determine the effective R-value of wall assemblies in predominately heating climates *i.e.*: Canada and North/Central USA.

Research from the US Department of Energy / Oak Ridge National Laboratory (ORNL) indicates fiberglass insulation declines as much as 40% in R-value as the ambient (outside) air temperature decreases.

Test Results	Effective R-Value	
1" Thermal 3Ht - product R-value (no construction materials)	5.86	

Wood Frame Assemblies / wall construction details

Oakridge National Laboratory / US Department of Energy claims the whole wall R-value of	R-13.7or 26% less than
<i>R-19 fiberglass insulation, 2X6 (16"O.C) wood frame wall as commonly installed</i>	labeled R-value
¹ / ₂ " Sheetrock, 2" x 4" Studs, Empty Cavity, 7/16" OSB, 1" Thermal 3Ht	8.3
¹ / ₂ " Sheetrock, 2" x 4" Studs, Empty Cavity, 7/16" OSB, ³ / ₄ " Strapping, 1" Thermal 3Ht	10.6
¹ / ₂ " Sheetrock, Vapor Retarder, 2" x 4" Studs, R-11 Batts, 7/16" OSB, 1" Thermal 3Ht	18.0
¹ / ₂ " Sheetrock, ³ / ₄ " Strapping, ³ / ₄ " Thermal 3Ht, 2" x 4" Studs with R-11 Batts, 7/16" OSB	19.5
¹ / ₂ " Sheetrock, 2" x 6" Studs with R-19 Batts, 7/16" OSB, ³ / ₄ " Strapping, 1" Thermal 3Ht	26.3

*R-19 fiberglass insulation would enhance the effective R-value of the preceding R-11 fiberglass assemblies by approximately R-6.

Steel Frame Assemblies / wall construction details

(ASHRAE)/American Society of Heating, Refrigerating and Air-conditioning Engineers states
the effective R-value of R-19 fiberglass insulation, 2" x 6" (16" O.C.) steel frame wallR-7.1 or 62% less than
labeled R-valueSteel Sheathing Interior, 2" x 6' Steel Stud Frame, Empty Cavity, Horizontal 2" x 4" Steel
Studs (Simulates Steel Girts), ½" Thermal 3Ht, Exterior Steel Sheathing5.22Steel Sheathing Interior, 2" x 6" Steel Stud Frame, Empty Cavity, Horizontal 2" x 4" Steel
Studs (Simulates Steel Girts), 1" Thermal 3Ht, Exterior Steel Sheathing.6.85Steel Sheathing Interior, 2" x 6" Steel Stud Frame, ½" Thermal, R-19 Fiberglass Batt
squeezed between 2" x 4" Steel Studs (Simulates Steel Girts) and Exterior Steel Sheathing.14.77

Concrete Assemblies / wall construction details

Effective R-Value

Effective R-Value

Effective R-Value

As tested to ASTM C1363-05 - the effective R-value of a concrete wall assembly containing 1/2" sheetrock, vapor retarder, 6" steel studs (16" O.C.), R-19 fiberglass, 3.5" concrete wall	R-11.6 or 39% less than labeled R-value
3.5" concrete wall, ¹ / ₂ " Thermal 3Ht adhered to the outside (cold side) of wall	3.8
3.5" concrete wall, 1" Thermal 3Ht adhered to the outside (cold side) of wall	5.9
¹ / ₂ " sheetrock, empty 6" steel stud cavity, 1" Thermal 3Ht (warm side), 3.5" concrete wall	9.8
¹ / ₂ " sheetrock, 6" steel stud cavity with R-19 fiberglass, 1" Thermal 3Ht, 3.5" concrete wall	21.6

Observations:

- In building assemblies the location of Thermal 3Ht affects the overall R-value of the assembly. Example: On the cold side of a 4" concrete wall the effective R-value of the wall combined with 1" Thermal 3Ht is R-5.9. However, when 1" Thermal 3Ht is installed on the warm side of the concrete wall with 6" steel studs and ½" sheetrock the effective R-value of the wall assembly becomes R-10.
- Additional LEED points may be achieved by utilizing 2" x 4" wood studs vs. 2" x 6" wood studs.
- > Utilizing thicker Thermal 3Ht further enhances the effective R-value of building assemblies.

EXPANDED POLYSTYRENE (EPS) EARNS NEW RESPECT

15 Year In-Situ Research - EPS Outperforms XPS in R-Value Retention

Studies show that as much as 25% of energy loss from a structure can be attributed to a lack of insulation on below grade foundations, crawl spaces and under slabs. In below grade applications, foam insulation is exposed to moisture and could lose R-value over time if this moisture is absorbed.

As shown in an independent, third party test program expanded polystyrene (EPS) maintains its R-value even after long term exposure in northern climates. A competing insulation material, extruded polystyrene (XPS), was shown to have lost R-value over time.

- The results demonstrate that EPS Type I outperforms XPS Type X in both R-value retention and decreased water absorption.
- The in-service R-value of the XPS insulation was reduced by almost half.
- Expanded polystyrene still delivered 94% of its specified R-value after 15 years.

EPS: Below Grade Testing Confirms R-Value Retention

The Expanded Polystyrene Association of Canada (EPAC) conducted a joint research project with the National Research Council of Canada/Institute for Research in Construction (NRC/IRC) to evaluate the durability and performance of expanded polystyrene (EPS) insulation in below grade applications over a 30 month exposure period.

- Testing performed by NRC on samples confirmed that all types of EPS insulation retained their specified material properties even after being subjected to the durability test protocol.
- Testing confirmed that all types of EPS insulation retained their specified thermal and mechanical properties even after being subjected to in-situ freeze/thaw cycling.
- The moisture content of EPS insulation was found to be less than 0.5% by volume at the end of the exposure and there was no loss in thermal resistance.
- The NRC test protocol was subsequently developed into an ASTM standard test method to provide a means of assessing durability performance of all types of insulation.

EPS: Freeze-Thaw Cycling Tests Show No Loss of R-Value or Strength

The EPS Molders Association commissioned a study by Intertek EL SEMKO, an independent test laboratory. Intertek conducted environmental cycling tests using ASTM C1512-07, *Standard Test Method for Characterizing the Effect of Exposure to Environmental Cycling on Thermal Performance of Insulation Products.*

- Tests were performed on 1" (25mm) thick specimens of EPS product Type I, Type II and Type IX.
- Test results confirm no loss in R-value or change in compressive strength for EPS.
- The results clearly demonstrate that EPS insulation does not absorb excessive amounts of moisture.

*The preceding information is supported by the EPS Molders Association Technical Bulletins: 101, 102 and 103.